Category Archives: Salmonberry (Rubus spectabilis)

Spawning salmon increase fruit production of salmonberries

Researchers from Simon Fraser University Burnaby, BC studied the effects of spawning salmon species on fruiting of salmonberries, Rubus spectabilis. No surprise to anyone who has used fish guts, fish eggs and carcasses as fertilizer, the remnants of spawning salmon dragged or floated up on the banks of streams, adds a big fertilizer boost to salmonberries. These researchers studied 14 salmon streams and found that all that organic waste product promoted fruiting, and the density of chum salmon was correlated with increased fruit production. Pinks didn’t measure up. Seed count, fruit weight and sugar content were not correlated with salmon density. I’ll bet those traits are more related to bumble bee and other pollinator activity. Conclusion? Fish fertilizer makes great fertilizer!

 SIEMENS, L.D., A.M. DENNERT, D. S. OBRIST, J. D. REYNOLDS. Spawning salmon density influences fruit production ofsalmonberry (Rubus spectabilis). Ecosphere 11(11):e03282. 10.1002/ecs2.3282

 Abstract. Annual spawning migrations by Pacific salmon can provide substantial subsidies to nutrientlimited

Annual spawning migrations by Pacific salmon can provide substantial subsidies to nutrient-limited freshwater and riparian ecosystems, which can affect the abundance, diversity, and physical characteristics of plant and animal species in these habitats. Here, we provide the first investigation of how salmon subsidies affect reproductive output in plants, focusing on a common riparian shrub, salmonberry (Rubus spectabilis). We studied 14 streams with a range of spawning salmon densities on the central coast of British Columbia, Canada. We determined the effects of chum (Oncorhynchus keta), pink (O. gorbuscha), and total salmon spawning density on the number of fruits per shrub, number of seeds per fruit, fruit weight, and estimated sugar content (° Brix) of salmonberry fruits. We found that the number of fruits per salmonberry shrub increased with increasing salmon density. However, we found no effect of salmon density on the number of seeds per fruit, fruit weight, or sugar content. The effect of salmon density was species-dependent; the number of fruits per shrub increased with chum salmon density but was not affected by pink salmon density. This could be because chum salmon occur at higher densities and are transferred from water to land at higher rates than pink salmon in our study area. Higher salmonberry fruit production could lead to a larger input of salmonberry fruits to coastal food webs. These results demonstrate how salmon can cross ecological boundaries and influence reproductive output of terrestrial species.

Using traditional ecological knowledge to understand and adapt to climate and biodiversity change on the Pacific Coast of North America

2019. Victoria Rawn Wyllie de Echeverria , Thomas F. Thornton  Ambio https://doi.org/10.1007/s13280-019-01218-6

2019. Wyllie de Echeverria, Thornton

The authors tackle one of the most complex issues in climate change science and ecology – how to include a human element in identifying change including traditional knowledge of plants and animals. How can human experiences, languages and traditions be used to verify change, and how can the importance of these traditions be included in ecological studies of climate change.  One main goal, of course,  is to identify ways indigenous people can maintain customary uses of their region, in this case, coastal areas in Southeast Alaska, while adapting to broader ecological changes that occur in an ecosystem.  Participants in a survey noted weather pattern shifts in their lifetime such as more snow, more rainfall, as well as shifts in the seasons. The researchers also examined language patterns to learn about traditional words used for weather or activities related to weather such as “foods being dried in the sun”. They indicated that changes in plant use in the region was most likely because of land use changes (logging, land development) rather than specific climate change.

One case study examined changes to salmonberry and blueberry species that are considered keystone species because they are used heavily by locals and have a long tradition of use. The authors tried to make connections between people’s recollections, historical knowledge and current practices compared to ecological knowledge of berry picking sites, yields, berry quality and more. I think back to some of the experiments in ecology I have been involved with over the years. They are so complex, it is difficult to isolate a single or even a handful of biological causes for a particular observation. For instance, there are so many reasons why berries might not appear in a season (frost during spring, drought, too much rain, poor soil nutrition, predation, and on and on. Recollections might be due to any or a combination of these factors. Attributing them to climate change is tricky and challenging. Human knowledge might just add to the evidence, but as climate scientists will agree, it takes many, many years and a lot of data points to begin to draw conclusions.

 

Salmonberry uses

Salmon berry plants bark and leaves can be cooked down for tea to treat diarrhea or dysntery. The branches are also used  Pena,D. Salmonberry: Food, Medicine, Culture – Part 1. Available online: Salmonberries.  Accessed 19 Oct, 2016.

The Zen of Berry Picking!

Salmonberry picking. The link above takes you to a cute short story about salmonberry picking in Alaska. It is called “The Zen of Berry Picking” by Lisa Kroner. It is a funny short story that truely does express how important berries are to people who pick everywhere and live off the land. “The thing about picking wild berries is that although they are everywhere, they are not always easy to get to-” (The Zen of Berry Picking, Kroner, p. 9). Berry picking is not always easy and it can be a real chore depending on the area you live in. I also think thats what makes it fun though, and feeling the appreciation when you come home with a bucket full of berries. Kroner expresses her thankfulness in this short story of her learning about salmonberries.

Bioactivity and Health Considerations

A very well done paper on the bioactivity and health considerations of many o the berries we have studied during this course. (Vaccinium ovalifolium, Vaccinium uliginosum, Rubus spectabilis, Rubus chamaemorus, Empetrum nigrum)  I like that they chose 3 different locations in Alaska, but I think they could have done without climate change in the title, for it was almost not even addressed.  A good read nonetheless.  Antioxidants